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ABSTRACT 

A stochastic model of climate variability is considered in which slow changes of climate 
are explained as the integral response to continuous random excitation by short period 
“weather” disturbances. The coupled ocean-atmosphere-cryosphere-land system is 
divided into a rapidly varying “weather” system (essentially the atmosphere) and a 
slowly responding “climate” system (the ocean, cryosphere, land vegetation, etc.). In 
the usual Statistical Dynamical Model (SDM) only the average transport effects of 
the rapidly varying weather components are parameterised in the climate system. The 
resultant prognostic equations are deterministic, and climate variability can normally 
arise only through variable external conditions. The essential feature of stochastic 
climate models is that the non-averaged “weather” components are also retained. 
They appear formally as random forcing terms. The climate system, acting as an in- 
tegrator of this short-period excitation, exhibits the same random-walk response 
characteristics as large particles interacting with an ensemble of much smaller par- 
ticles in the analogous Brownian motion problem. The model predicts “red” variance 
spectra, in qualitative agreement with observations. The evolution of the climate prob- 
ability distribution is described by a Fokker-Planck equation, in which the effect of 
the random weather excitation is represented by diffusion terms. Without stabilising 
feedback, the model predicts a continuous increase in climate variability, in analogy 
with the continuous, unbounded dispersion of particles in Brownian motion (or in a 
homogeneous turbulent fluid). Stabilising feedback yields a statistically stationary 
climate probability distribution. Feedback also results in a finite degree of climate 
predictability, but for a stationary climate the predictability is limited to maximal 
skill parameters of order 0.5. 

1. Introduction 

A characteristic feature of climatic records is 
their pronounced variability. The spectral analy- 
sis of continuous climatic time series normally 
reveals a continuous variance distribution en- 
compassing all resolvable frequencies, with 
higher variance levels at lower frequencies. 
Combining different data sources of various 
time scale and resolution (recorded meteoro- 
logical data, varves, ice and sediment cores, 
global ice volume) the increase in spectral 
energy with decreasing frequency can be traced 
from the high frequency limit of climate varia- 
bility (approximately 1 cycle per month, fol- 
lowing the definitions adopted in GARP Pub- 
lication 16, 1975) down to frequencies of order 
1 cycle per lo6 years (cf. GARP-US Committee 
Report (1975), Appendix A). An understanding 
of the origin of climatic variability, in the entire 
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spectral range from extreme ice age changes to 
seasonal anomalies, is a primary goal of climate 
research. Yet despite the long interest in the 
ice-age problem and the more recent intensifica- 
tion of climate research there exists today no 
generally accepted, simple explanation for the 
observed structure of climate variance spectra. 

Various attempts have been made to link 
climatic changes to variable external factors 
such as the solar activity, secular changes of 
the orbital parameters of the earth, or the in- 
creased turbidity of the atmosphere following 
volcanic eruptions (cf. reviews in GARP Pub- 
lication 16). A persistent difficulty with these 
investigations is that  the postulated input- 
response relationships, if they exist, are not suf- 
ficiently pronounced to be immediately obvious 
on inspection of the appropriate time series. 
Thus a detailed statistical analysis is necessary, 
for which the data base is often only marginally 



474 K. HASSELMANN 

adequate. Srimmaries of solar-climate relations 
extracted by statistical techniques may be 
found in King (1975) and Wilcox (1975); acriti- 
cal analysis of tjhe statistical significance of 
some of the claimed correlations has been given 
by Monin & Vulis (1971). 

Climate variations have also oftcn been dis- 
cussed in terms of internal atmosphere-ocean- 
cryosphere-land feed-back mechanisms. Posi- 
tive feedback amplifies the response of the 
system to changes in tho external paramcters 
and, if sufficicmtly strong, can produce unstable 
spontaneous transitions from one climate state 
to another. Feedback mechanisms have gener- 
ally been formulated in terms of highly simpli- 
ficd cnergy-budget models containing only a 
few “climate” variables, such as the zonally 
averaged surface temperatures, the area of the 
ice sheets and the albedo of the earth’s surface. 
A basic difficulty of unstable feedback models 
(apart fron--- or possibly because of-their high 
degree of idealization) is that  they tend to pre- 
dict climatic variations as flip-flop transitions 
and therefore fail to reproduce the observed 
continuous spectrum of climatic variability. 

I n  this paper an alternative model of climate 
variability is investigated which predicts the 
bmic structure of climatic spectra without in- 
voking internal instabilities or variable external 
boundary conditions. The variability of clirnate 
is attributed to internal random forcing by t,he 
short time scale “weather” components of the 
system. Slowly reponding components of the 
system, such as the ice sheets, oceans, or vege- 
tation of the earth’s surface, act as integrators 
of this random input mnch in the same way as 
heavy particles imbedded in an ensemblc of 
much lighter particles integrate the forces 
exerted on them by the light particles. If feed- 
back effects are ignored, the resultant “Brown- 
ia,n motion” of the slowly responding compo- 
nents yields r.m.s. climate variations-relstive 
to a given initial state-which increase as the 
square root of time. I n  the frequency domain, 
the clima.te variance spectrum is proportional 
to the inverse frequency squared. The non- 
integrable singularity of the spectrum at zero 
frequency is consistent with t.he non-stationarity 
of the process. The spectral analysis for a finite- 
duration record yields a finite peak a t  zero fre- 
quency proportional in energy to the duration 
of the record. 

I n  order to obtain a statistically stationary 

response, stabilising negative feedback proces- 
ses tnmt be invoked. Thus from the viewpoint 
of the present model, the problem of climate 
variability is not to discover positive feedback 
mechanisms which enhance the small variations 
of external inputs or produce instabilities, but 
rathcr to identify the negative feedback pro- 
cesses which must be present to balance the 
continual generation of climatic fluctuations 
by the random driving forces associa.ted with 
the internal “weather” interactions. 

Following the derivation of the random-walk 
characteristics of a stochastically driven climate 
system in Sections 2 and 3, the basic Fokkcr- 
Planck eqiiation governing the evolution of 
such a system is presented in Section 4. Special 
solutions for a system with linear feedback are 
given in Section 5 ,  and the results are then ap- 
plied to the analysis of climate predictability in 
Section 6. 

Some of the concepts underlying the present 
stochastic model have been expressed previously 
by Mitchell (1966) in his investigation of sea- 
surface temperature (SST) anomalies. An ap- 
plication of the present model to SST data and 
to temperatiire fluct,uations in the seasonal 
thermocline is given in Part 2 of this paper 
(Frankignoul & Hasselmann, 1976). In  Part 3, 
the effect of introducing stochastic forcing into 
simple statistical dynamics1 models of tho 
Biidyko-Sellers type is investigated (Lemkr, 
1976). 

2. Relationship between GCM’s, SDM’s 
and stochastic forcing models 

It IS useful to introduce a formal notation 
which IS independent of the individoal model 
structure. Let the instantaneous state of the 
complete system atmosphere-ocean-cryospherc- 
land be described by a finite set of discrete 
variables z = (zl, z 2 ,  ...). The state vector z may 
be taken to reprcsent the fields of density, ve- 
locity, temperature, etc. of the various media, 
as defined at discrete grid points and levels, or 
as given by tho coefficients of some suitably 
truncated functional expansion. The evolution 
of the system will then be described by a series 
of prognostic equations 

dz ,  
- = W,(Z) 
dt 

(2.1) 
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where wi is a known (in general complicated 
nonlinear) function of z. For the following we 
ignore the parameterization problems associated 
with the projection of the complete system on 
to a finite set of parameters; we assume that 
for our purposes the prognostic eqs. (2.1) ac- 
curately describe the evolution of the system 
for all times of interest. 

A basic assumption of most models is that 
the complete system z can be divided into two 
subsystems, z = (x, y),  which are characterised 
by strongly differing response times tz, zu. Thus 
writing eq. (2.1) in terms of the two subsystems, 

(2.3) 

it is assumed that 

0 ( zi ($!) ’) = t,<ty = 0 ( y, @) - ’) (2.4) 

The fast responding components zt may be 
identified with the normal prognostic “weather” 
variables used in deterministic numerical weath- 
er prediction or General Circulation Models 
(GCM’s), whereas the slowly responding “cli- 
mate” variables y t  may be associated with 
variablos such as the sea surface temperature, 
ice coverage, land foliage, etc. which are nor- 
mally set constant in weather prediction models 
but represent essential prognostic variables on 
climatic time scales. zz is typically of the order 
of a few days, whereas most climate variables 
have response scales ty of the order of several 
months, years or longer. Thus the inequality 
(2.4) is generally well satisfied. 

With presently available computers it is not 
possible to integrate the complete coupled sys- 
tem (2.2)-(2.3) over periods of climatic time 
scale O(t,). High resolution GCM’s are normally 
used to integrate the subset of equations (2.2) 
over an intermediate period t t  in the range 
t, att aty for which the “climatic” variables 
can be regarded as constant, but which is still 
sufficiently long to define the statistics of the 
weather variables x for a given climatic state 
y. Thus although GCM’s provide important in- 
formation for climate studies, they are not 
suitable for the simulation of climate variability 
as such. 
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Dynamical investigations of climate varia- 
bility have been based in the past largely on Sta- 
tistical Dynamical Models (SDM’s), which ad- 
dress the subset of eqs. (2.3). In theusualap- 
proach it is argued that for the time scales tu 
of interest in (2.3), the rapidly fluctuating 
terms in the prognostic equations can be ig- 
nored, so that (2.3) can be averaged over the 
period t i ,  thereby removing the weather fluc- 
tuations while still regarding y in the right hand 
side of (2.3) as constant, 

(2.5) 

Formally, it will be more convenient in the 
following to regard the average <...) as an 
ensemble average over a set of realisations x 
for given y. It is assumed that ergodicity holds, 
so that ensemble averaging and time averaging 
are equivalent. 

Since vt is in general a nonlinear function of 
x, the average rate of change (v,) of yt will 
depend on the statistical properties of x as 
well as on y. To close the problem, the statistics 
of x must therefore be expressed in. terms of y 
through the introduction of some closure hypoth- 
esis. For example, in zonally averaged energy 
budget models of the Budyko (1969)-Sellers 
(1969) type the meridional heat fluxes by stand- 
ing and transient eddies must be parameterised 
in terms of the mean meriodional temperature 
distributions. 

Although this class of model may be termed 
statistical in the sense that an averaging opera- 
tion and a statistical closure hypothesis are in- 
volved, the reduced eq. (2.5) is in fact deter- 
ministic rather than statistical. It is known that 
the asymptotic solutions of nonlinear deter- 
ministic equations containing a relatively small 
number of degrees of freedom can already ex- 
hibit non-periodic, random-type oscillations 
similar in character to observed weather or 
climate fluctuations (cf. Lorenz, 1965). How- 
ever, simple models with these features appear 
to have been investigated primarily in relation 
to weather simulation. Most of the better known 
simple SDM’s predict a unique, time-independ- 
ent asymptotic state for any given initial 
state. These models appear inherently incapable 
of generating internally time variable solutions 
with continuous variance spectra, as required 
by observation. In the past climate variability 
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has therefore been explained in the framework 
of classical SDM’s as the response of the system 
(2.5) to variations of external boundary con- 
ditions, such as the solar radiation and the tur- 
bidity of the atmosphere, rather than through 
internal interactions. 

By a natural extension of the SDM, however, 
one can obtain an alternative climatic model 
which yields continuous variance spectra with 
the observed “red” distribution directly through 
internal interactions. (This, of course, does not 
exclude the possible significance of additional 
externally induced climatic changes). Return- 
ing to eq. (2.3),  let 6 y = y ( t )  -yo  denote the 
change of the climate state relative to agiven 
initial state y(t = 0) =yo in a time t <ty suffi- 
ciently small that y can still be regarded as 
constant in the forcing term on the right hand 
side of the equation. The change may be divided 
into mean and fluctuating terms, 6y = (6y) + y’ 
where the ensemble average is taken here over 
all x states for fixed yo (not y). The mean change 
(6y) follows from ( 2 . Q  

<6y,) = (v*>t  (2.6) 

(for this term it  is irrelevant whether the aver- 
age refers to fixed y or yo). The rate of change 
of the fluctuating term is given by 

(2.7) 

where (v;) = 0 and y; = 0 for t = 0. 
The statistics of vi(t) are defined through the 

statistics of the weather variables ~ ( t )  for given 
yo. It is assumed that x(t), and therefore v(t), 
represents a stationary random process. 

Equation (2.7) is identical to the equations 
describing the diffusion of a fluid particle in a 
turbulent fluid, where y i  represents the coor- 
dinate vector of the particle and v; the turbulent 
(Lagrangian) velocity It is well known from 
this problem (Taylor, 1921, Hinze, 1959) that 
for statistically stationary w;, the integration of 
(2.7) yields a non-stationary process yi, the co- 
variance matrix <yjy;> growing linearly in time 
t for tat,. Taylor pointed out in his original 
paper that this result could be interpreted 
physically as the continuum-mechanical anal- 
ogy to normal molecular diffusion or to Brown- 
ian motion. In fact, for t > t ,  it is immaterial 
for the (macroscopic) statistical properties of 
y;, involving time scales >tz, whether the forc- 
ing is continuous or discontinuous. 

The nonstationary response y; to stationary 
random forcing w; in the stochastic model im- 
plies that climate variations would continue to 
grow indefinitely if feedback effects were ig- 
nored. These, of course, will begin to become 
effective as soon ns the integration is carried 
into the region t = O ( t , ) .  The properties of the 
random walk model in the ranges t <ty and t = 

O(t , )  will be discussed in more detail in the fol- 
lowing sections. 

The relationship between GCM’s, SDM’s and 
stochastic forcing models may be conveniently 
summarized in terms of the Brownian motion 
analogy. The climate variables y and weather 
variables x may be interpreted in the analo- 
gous particle picture as the (position and mo- 
mentum) coordinates of large and small par- 
ticles, respectively. The analysis of climate 
variability in terms of SDM’s is then equivalent 
to determining the large-particle paths by con- 
sidering only the interactions between the large 
particles themselves and the mean pressure and 
stress fields set up by the small-particle mo- 
tions (plus the influence of variable external 
forces). Numerical experiments with GCM’s 
correspond in this picture to the explicit com- 
putation of all paths of the small particles for 
fixed positions of the large particles. Even if 
the large particles were allowed to vary during 
the computation, i t  would normally not be 
feasible to carry the integrations sufficiently 
far to consider appreciable deviations of the 
large particles from their initial positions. Fi- 
nally, the approach used in the stochastic forcing 
model corresponds to the classical statistical 
treatment of the Brownian motion problem, in 
which the large-particle dispersion is inferred 
from the statistics of the small particles with 
which they interact. In contrast to the Brownian 
motion problem, the variables x in the real 
climate-weather system are, of course, not in 
thermodynamic equilibrium, so that the sta- 
tistical properties of x cannot be inferred from 
the statistical thermodynamical theory of 
energetically closed systems, but must be evalu- 
ated from numerical simulations with GCM’s 
(or from real data). A great reduction of com- 
putation is nevertheless achieved through a 
statistical treatment, since relatively little sta- 
tistical information on x is actually needed, and 
this can be obtained from GCM experiments of 
relatively short duration t i  atu. 

At first sight it may appear surprising that 
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a statistical reduction of the complete climate- 
weather system is possible a t  all without ar- 
bitrary closure hypotheses, since one is ac- 
customed to regarding systems involving tur- 
bulent geophysical fluid flows as basically ir- 
reducible, strongly nonlinear processes. The re- 
duction in this case is a consequence of the 
time-scale separation (2.4). This property is 
lacking in the usual turbulent system. How- 
ever, the condition is familiar from “weak- 
turbulence” theories for plasmas (cf. Kadomt- 
sev, 1965) or from similar theories of w-eakly 
interacting random wave fields in solid state 
physics, high energy physics and in various 
geophysical applications (cf. Hasselmann, 1966, 
1967). In  essence, the property (2.4) enables 
statistical closure through the application of 
the Central Limit Theorem, whereby the re- 
sponse of a system is completely determined 
statistically by the second moments of the input 
if the forcing consists of a superposition of a 
large number of small, statistically independ- 
ent pulses of time scale short compared with 
the response time of the system. 

3. The local dispersion rate 

For times t in the intermediate range t la 
t <t, the integration of (2 .7 )  yields linearly in- 
creasing covariances in accordance with Tay- 
lor’s (1921) relation 

where 

(3 .2)  

and P , j ( t )  = <v;(t + t ) v ; ( t )>  denotes the covari- 
ance function. 

Physically, the dispersion mechanism may 
be interpreted as the response to a large num- 
ber of statistically independent random changes 
Ay,  =w;.  At induced in y, a t  time increments 
At of the order of the integral correlation time 

It is useful to represent the dispersion pro- 
of ff;. 

cess also in the Fourier domain. Writing 

(3.3) 

the solution of (2 .7)  may be expressed as the 
Fourier integral 

yi ( t )  = j-m Y I ( w ) e i o t d w -  Fw Y , ( w ) d w  
W 

(3.4) 

where 

(3.5) 

The second, time independent term on the right 
hand side of (3.4) arises through the initial con- 
dition y; = 0 for t = 0. 

For a stationary process, the Fourier com- 
ponents are statistically orthogonal, 

where P, , (w)  denotes the (two-sided) cross 
spectrum of wi. The Fourier components Y , ( w )  
are then also statistically orthogonal, and the 
cross spectrum of y;(t) is given by 

(3.6) 

The existence of a non-integrable singularity 
in G,, at w = O  is consistent with the non-sta- 
tionarity of y;. The fact that the non-stationary 
contribution to y; is conceritrated at  zero 
frequency can be confirmed by evaluating the 
contribution to the covariance from a narrow 
band of frequencies - Aw < w < Aw centered at 
zero frequency. Noting that the second integral 
in (3.4) represents a zero-frequency contribu- 
tion, this is given by 

The weighting function 2(1 -cos wt) /w2  has a 
maximum value equal to t 2  a t  w = O  and a peak 
width proportional to l /t .  Thus its integral is 
proportional to t ,  and in the limit of large t ,  aa 
the peak becomes infinitely sharp, the function 
can be replaced by the &function expression 

2( 1 - cos wt)  
I -2ntS(w) (wt>l) 

W 
(3.8) 

For large t (3.7) therefore becomes 

<y;y;> = 2ntP,,(O) (3.9) J -W 
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covariance 
\ 

spectrum 

BYg. 1 .  Input and response functions of stochasti- 
cally forced climato model without feed-back; (a) 
covariances, ( b )  spectra. 

Tho subscript Aw has now been dropped, since 
the contribution to <y; yj> from frequencies 
I o I '- Atu is constant and therefore becomes 
negligible compared with the norist,ationary 
contribiition for large t .  

Equation (3.9) represents a special case of 
the resonant response of an undamped linear 
system to random external forcing. The general 
result, for such systems states that  the energy 
of the response is concentrated in spectral lines 
at the eigenfrequencies of the system, and that 
the energy of each line increascs linearly with 
time at a rate proportional to the spectral den- 
sity of the input at the eigenfreqiiency (cf. 
Hassclmann, 1967). Equation (3.9) corresponds 
to the case of a system with a singlc normal 
mode of frequency o = 0. 

The equivalence of the expressions (3.1), (3.2) 
and (3.9) can be recognised using the Fourier 
transform relation 

P,,(w) = - P,,( t )  e -  iwrdt 
2n lSm -a, 

(3.10) 

It follows from (3.10) that normally, for 
Pil(0)  +0, the spectrum of any stationary pro- 
cess vi becomes whitc (constant) for sufficiently 
small frequencies (in other words, one need 
consider only the first term of the Taylor ex- 

pansion of the spectrum). Generally, thereexists 
some cut-off time lag O(t,) such that P i j ( t )  (5 0 
for t >tr. For frequencies o <ti1, the expo- 
nential in (3.10) can then be set equal to one, 
so that Fi j (w) -F i l (0 ) .  I n  this range equation 
(3.6) may then be replaced by 

(3.11) 

The left side of the inequality follows from the 
restriction to integration times t <ty, which 
limits the definition of the spectrum to fre- 
quencies large compared with t;'. 

The main features of the random walk re- 
sponse in the time and frequency domain are 
indicated in Fig. 1 .  

In  most climatc applications the reponse will 
lie in the low frequency range w <ti1 where the 
input spcctrum can be regarded as white and 
equation (3.11) is applicable. For the genera- 
lization of the theory in the next section it is 
important to note that the constant level of the 
input spectrum at low frequencies can be deter- 
mined from relatively short time series of the in- 
put, the record length roquired being governed 
by the timc scale of the input, rather than the 
time scale of the response. The length of the timc 
series need only be long enough to evaluate the 
covariance function for timc lags up to the cut- 
off time lag of order tr. For example, in the 
problem of the generation of SST anomalies by 
random fluxes at the sea surface (considerod 
in Part 2 of this paper), the statistical structure 
of the atmospheric input can normally be ade- 
quately dctcrmined froin timc series of a few 
weeks duration (ignoring the seasonal signal). 
From this the statistical properties of the ran- 
dom walk responsc according to (3.1), (3.2),  
and (3.11) can be evaluated for much longer 
time periods, of the order of several months. 
The upper limit t = O ( t , )  of the response timc 
is determined ultimately by the breakdown of 
the uncouplcd random walk model when inter- 
nal feedback effects begin to come into play. 

The dispersion coefficients D, ,  can be in- 
ferred indircctly, without reference to weather 
data, from the rate of growth of the covarian- 
ces <yiyj) as ovaluated from climatic time series. 
Alternatively, if the stochastic forcing is known 
as a function of the weather variables, the zero 
frequency level of the spectral input can be 
determined directly from weather data. By 
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either method, application of the random walk 
model, for example, to ice sheet data or SST 
anomalies indicates that the r.m.s. rate of di- 
vergence of climate from its present state by 
random weather forcing is considerable: with- 
out stabilising feedback the random walk mod- 
el predicts that changes in the extent of the 
ice cover comparable with ice-age amplitudes 
would occur within time periods of the order 
of a century. The inclusion of feedback is thus 
essential for a realistic climate model. The gen- 
eralisation to a model including arbitrary in- 
ternal coupling is carried out in the next sec- 
tion. 

4. The Fokker-Planck equation for a 
general stochastic climate model 

The inequalities tz a t  <t, limiting the range 
of validity of the random walk model without 
feedback are charactcristic of a two-timing 
theory. With respect to the rapidly varying 
components of the system the theory represents 
an asymptotic infinite-time limit, but at the 
same time the analysis is valid only for infini- 
tesimal changes of the slowly varying com- 
ponents. The standard way of removing the 
restriction t <t, is to interpret the infinitesimal 
changes of the slowly varying components as 
rates of chan,ge, thereby obtaining a differential 
equation which is valid for all times, provid- 
ed the original conditions on which the local 
theory was based continue to remain valid. 

Since y represents a random variable, the 
appropriate differential equation should be 
formulated for the probability density distribu- 
tion p ( y ,  t )  of climatic states in the climatic 
phase space y. For a system in which the mean 
value and covariance tensor of the infinitesimal 
changes 6y, -y , ( t )  -yi ,o in an infinitesimal time 
interval 6t at, are both proportional to 6t (the 
effects of the higher moments can be shown to 
be small on account of the two-timing condi- 
tion (2.4)) the evolution of the probability dis- 
tribution p(y, t )  is governed by a Fokker- 
Planck equation (cf. Wang and Uhlenbek, 1945) 

with y; =6yi - (&,) as before, 

and it =<6yt)/6t -aD,,/ay, or, from (2.6) and 
(3.11, (3.9) 

a 
ay, 

6, = <w,> - 32 - P,,(O) (4.3) 

Provided the two-scale approximation remains 
valid, eq. (4.1) describes the evolution of an 
ensemble of climatic states with an arbitrary 
initial distribution for arbitrary large times. 
The propagation and diffusion coefficients Gt, 
D,, will generally be functions of y, both di- 
rectly and through their dependence on the 
statistical properties of the weather variables 
x. The equation includes both direct internal 
coupling through the propagation term Gl and 
indirect feedback through the dependence of 
the diffusion coefficients on the climatic state. 

I n  practice, the expectation values and 
spectra in (4.2) and (4.3), defined as averages 
over an x-ensemble for fixed y, will normally 
be determined from time averages, ra.ther than 
through ensemble averaging. In  order that the 
average values can be regarded as local with 
respect to the climatic time scale t, but still 
remain adequately defined statistically with 
respect to the weather variability of time scale 
tz, the averaging time T must satisfy the two- 
sided inequality tz < T <t,. The inequalities 
imply that the spectral density P,,(O) at “zero 
frequency” in eqs. (4.2), (4.3) must be inter- 
preted more accurately as the level of the spec- 
trum in the frequency range ti1 <w at;’-as 
was already pointed out in connection with eq. 
(3.11). The variance spectra of v, for lower fre- 
quencies w =O(r ; ’ )  must be attributed, within 
the framework of the two-timing theory, to 
the slow variations of the mean variables <v,> 
on the climatic time scale. Since <v,) depends 
on the local climatic state, the increase of the 
variance spectra of the climat,ic variables y, 
towards lower frequencies will normally be as- 
sociated with a corresponding increase of the 
variance spectra of w i  (and the “weather” vari- 
ables x i )  in this range. This is not in conflict 

where 

with the basic premise of a white input spec- 
trum at “low” frequencies. Essential for the 
application of the two-timing concept is that 
there exists a spectral gap between the “weath- 
er” and ‘‘climate” frequency ranges in which 
the input spectra are flat (cf. Fig. 2 ) .  

(4’1) 
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cova ri ancc 

spectrum 

i Ty“(=A) Tx‘-’ w 4 

Fig. 2. Input and response of stochastically forced 
(single component) climate model with linear feed- 
back; (a) covariances, ( b )  spectra. In the ranges 
r,<r<rg and r ; l < m < r ; l  the models with and 
without feedback are identical. In the rangew 5 ~ ; ~  
the spectrum P ( w )  cannot be regarded as part of 
the “weather input”, but is coupled to the climate 
response. 

The presence of the diffusion terms in (4.1) 
implies that  climate evolution is necessarily a 
statistical rather than a deterministic phenom- 
enon. Even if a well defined climate state is 
prescribed initially in the form of a S-function 
distribution for p ,  the diffusion term immedi- 
ately leads to a finite spread of the probability 
distribution p at later times. Without the dif- 
fusion term, an initial &function distribution 
would retain its S-function character and simply 
propagate along the characteristics dy,/dt = 6 ,  
in the climatic phase space. 

The analytical integration of eq. (4.1) for an 
arbitrary nonlinear climate model with several 
degrees of freedom will normally not be pos- 
sible. However, solutions can be constructed, for 
example, by the Monte Carlo method, in which 
eq. (2.5) and (2.7) are integrated numerically 
(without the restriction t <ru) for an ensemble 
of realisations using an  appropriate statistical 
simulation of v;. Within the approximations of 

the two-timing theory, v; can be represented 
very simply aa a zero’th order Markov process. 

For the special case of linear feedback and 
constant diffusion coefficients, equation (4.1) 
can be solved explicitly. These solutions are ap- 
propriate for climatic systems with small ex- 
cursions. However, several properties of the 
linear case discussed in the following two sec- 
tions may also be expected to apply qualita- 
tively to more general climate models. 

Although eq. (4.1) describes the evolution of 
p ( y ,  t )  in closed form (given the x-statistics for 
given y) ,  the probability distribution y ( y ,  t )  
provides only a partial statistical description 
of the random process y( t ) .  A complete statis- 
tical description would require, for example, 
the set of joint probability distributions 
p(yl, ..., y,) of the climate states for any set of 
times t l ,  ..., t,, or the set of all moments <yl 
... y,) for all p > O .  Generalised Fokker-Planck 
equations similar to (4.1) can be derived also 
for multi-time probability distributions, but 
these will normally be of less immediate inter- 
est. I n  practice, Monte Carlo methods of solv- 
ing (4.1) actually generate the complete statis- 
tics of the process y, as well as yielding p ( y ,  t ) ,  
so that the generalised Fokker-Planck equa- 
tions need not be considered explicitly. 

5.  Linear feed-back models 

(a) Solution of the Fokker-Planck equation 
For small excursions of the climatic states 

about an equilibrium state y = 0 ,  say, the dif- 
fusion and velocity coefficients in (4.1) can be 
expanded with respect to y. Since the feedback 
terms must vanish for the equilibrium state, the 
coefficients are given to lowest order by 

D , j  = const (5.1) 

For a stable equilibrium state, the matrix V , )  
must be negative definite. 

The general solution of (4.1) for an  arbitrarily 
prescribed initial distribution p(y,  t = 0 )  ==po(y )  
may be constructed by superposition from the 
Green-function solution for an initial &function 
distribution p o ( y )  =6(y, -ylo)  ... 6(y, -yno) a t  an 
arbitrary point yo. This is given by the normal 
distribution 

Tellus XXVIII (1976), 6 
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p(y, 1 )  = (2n)-”’7RI-”3 

where the mean [y,] and covariance tensor R,, = 

[(yt -[y 3 ) .  (yl -[y,])] are time dependent func- 
tions satisfying the differential equations and 
initial conditions 

(5.4) 

(5.5) 

The square parentheses [ ] denote averages 
over the ensemble of climatic states y. Equa- 
tions (5.4), (5 .5 )  can be verified by substitu- 
tion of (5.3) in (4.1) or can be derived directly 
from (2.5),  (4.1), (4.2) and (4.3). In matrix no- 
tation, the solutions may be written 

Esl = eVtYo (5.6) 
+ 

R = R ,  -evtR,eVt (5.7) 

where V+ denotes the transpose of V and R, 
is the asymptotic stationary solution of (5.5), 

R, and the corresponding asymptotic equilib- 
rium distribution p ,  (with [y], = 0 )  are inde- 
pendent of the initial state yo. 

The expressions become particularly simple 
if the matrix V is diagonal, V,,  =aij&) (paren- 
theses around the index indicate that the index 
is excluded from the summation convention). 
Normally, this can be achieved by a suitable 
linear transformation of y to new coordinates. 
Equations (5.6), (5.7) then become 

(5.11) 

(b) Spectral decomposition of the variance 
The Gaussian form (5.3) of the probability 

distribution p(y,  t )  could have been inferred 

Tellus XXVIII (1978). 6 

directly from the Central Limit Theorem, with- 
out invoking the Fokker-Planck equation. The 
theorem states that, under very general condi- 
tions, the response of a linear system driven 
by a statistically stationary input consisting of 
a continuous sequence of infinitely short, sta- 
tistically independent pulses is Gaussian, in- 
dependent of the detailed statistical structure 
of the input. This property holds not only for 
the probability distribution p, but generally 
for the multi-time joint probability distribu- 
tion. Thus the statistical structure of the pro- 
cess y is completely specified if the first mo- 
ments (given by (5.6)) and the second moments 

are known. 
The latter are given by the solution 

S(t, t.) = evtR(t) (t > 0) (5.13) 

of the differential eqnation 

(5.14) 

under the initial condition gt,(t, t =0) = R,,(t), 
with R,,(t) given by (5.7).  Equation (5.14) fol- 
lows from (2.5), (2.7) and (5 .2 ) ,  noting that in 
the two-timing limit o;(r +T) = (v,(t  +t) - (vl(t  + 
t))) and y,(t) are statistically uncorrelated for 
t 1 0 ,  since the correlation time scale of the 
random forcing is regarded m infinitely short 
compared with the correlation time scale of the 
response. This argument does not hold for t < 0, 
since y,(t) in this cme includes the response to 
v; a t  the earlier time 1 +t. However, the solu- 
tion for t i 0  can be obtained from (5.13) by 
interchanging the indices and redefining the 
time variables. 

Of particular interest is the asymptotic sta- 
tionary solution 

S( t )  = lim #(t,  t) = e “R, 
t 4  

(6.15) 

which can be compared with the statistical 
properties of observed, quasi-stationary cli- 
matic time series. If the second moments of tho 
input (i.e. D,,) are specified, it is known from 
linear systems analysis that S(r)  completely 
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determines the linear response characteristics 
(transfer functions) of the system. 

The relation corresponding to (5.15) for the 
climate cross spectrum G i j  can best be derived 
by direct substitution of the Fourier integral 
representation (3.3) in the basic climate equa- 
tion 

2 - = vi,yj + v; 

One obtains 

G,, (w)  = T,, T,: Fkl(0) (5.18) 

where T = ( i w 1 -  V)- l  (I =unit matrix). For 
diagonal IT, eq. (5.16) becomes 

(5.17) 

Equations (5.15), (5.16) may be compared with 
the corresponding relations (3.1), (3.11) for a 
system without feedback. The deviation covari- 
ance (yiy;) considcrcd in section 3 should bc 
compared in the case of a stationary y-process 
with the expression [y: yi] = [(yi - ~ ~ , ~ ) ( y ~  -y j , , ) ]  
(also known as the “structure function”, cf. 
Tatarski (1961)).  This can be expressed in terms 
of the covariancc function as 

The general form of the functions U i j ,  <yiy;) 
and [y: y;] for a system with and without linear 
feed-back is shown in Fig. 2. For T~ <T <t, and 
z;’<tr)<z;’ the behaviour of both systems is 
identical, but for t = O(T,) and (0 = O(t,’) the 
unbounded response of the system without 
feedback begins to diverge from the bounded 
response functions of the linearly stabilised 
system. 

6. Climate predictability 

Tho evolution of tho probability distribution 
p(y,  t )  as governed by the Fokktr-Planck eqiia- 
tion (4.1) determines the degree of climate pre- 
dictability. If the climate state yo at time t = O  
is known, the initial probability distribution p ,  
is a d-function. For a fully predictable system, 
p(y, t )  remains a d-function for all times t > 0. 
As pointed out in Section 4, however, the dif- 

fusive term in (4.1) results in a broadening of 
the probability distribution for t 3.0, and clim- 
ate prediction therefore always entails some 
degree of statistical uncertainty. 

A simple quantitativo measure of the pre- 
dictive skill can be defined in terms of the mean 
climatic state [yi] and the covariance matrix 

regarded as the climate “prediction”. (In the 
case of a linear system, this is identical with 
the most probable climatic state, but in general 
the most probable state and the mean state will 
differ.) In  order to introduce a measure of skill 
as a simple number, tho distance d, of the pre- 
dicted climate state from the initial state and 
the r.m.s. dcviation 8 from the mean must be 
defined in terms of some suitable positive de- 
finite matrix M i j ,  

Rij=[(Yi - [ ~ i l ) . ( Y j - [ ~ j l ) l .  The mean may be 

The i i s ~ i a l  definition of the skill parameter is 
then given by the ratio “signal to signal-plus- 
noise”, 

For small times t<r,, the predicted change 8 ,  
increases linearly with time 

61 (Afijvi.nu,,n)*t (6.41 

whereas the r.m.s. error grows as t i ,  

8 = (2Di,;Mi,)’t: (6.5) 

Thus initially the skill parameter s1 - t * ;  the 
random deviations from the initial state in- 
duced by the stochastic forcing dominate over 
the deterministic changes produced by the in- 
ternal coupling within the climatic system, and 
the predictivc skill is small. 

For very large t ,  8 ,  and 8 will normally ap- 
proach the limiting valncs 

appropriate to the stationary equilibrium dis- 
tribution p,(y)-assuming such a distribution 

Tellus XXVIII (1976), 6 
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O F  
0 1 0  t -  2 3  

Pig. 3. Predicted climate changes 6, relative to 
initial state and 6, relative to asymptotic state, 
statistical error F ,  and skill parameters s,, sa and 
s = min (a,, a,), for a linear (single component) 
climate system. The initial value is chosen as yo = 
(Rm)* = 1 (in this case az and 6, happen to  coincide). 

exists-and the skill parameter s1 will become 
constant. 

The predicted climatic state for large t is 
simply the stationary climatic mean state [y],. 
This prediction may be regarded as trivial in 
the same way as the prediction through per- 
sistence for small t is trivial. Since the contribu- 
tion from straight persistence was subtracted 
in the definition of sl, it apears more appropriate 
to introducc an alternative skill parameter 

sa=6*/(Ea+B;)”’L (6.6) 

for large t ,  where 

(6.7) 

is the deviation of the predicted climatic state 
from the stationary climatic mean. The net 
skill parameter may then be defined as s =min 
(81, 8 2 ) .  

The behaviour of s ( t )  in the intermediate 
range t =O(z,) between the limiting regions in 
which either s1 or 8, is very small depends in 
detail on the structure of the climate model. 
The general properties of s ( t )  to be expected in 
this range may be inferred, however, from the 
solution for a linear system, cf. Fig. 3. Provided 
the initial deviation from the stationary climat- 
ic mean is of the same order as the variability 
of the stationary asymptotic distribution (for 
each degree of freedom separately), the maximal 
value of the net skill parameter generally lies 
in the neighbourhood of 0.5. This is due to t.he 
fact that the relaxation times for 6, and E are 
of the same magnitude, since both are governed 

Tellus XXVIII (1976), 6 

by the same internal feedback processes. Thus 
both 6 ,  and E increase a t  approximately the 
same rate (after the initial period t < t , ) ,  and 
the non-trivial (i.e. non-psrsistent) component 
of the prediction and the statistical error al- 
ways remain of comparable magnitude. 

These results may be expected to carry over, 
a t  least qualitatively, to nonlinear systems, 
provided there exists a unique stationary equi- 
librium distribution-i.e. provided the system 
is transitive in Lorenz’ (1968) sense. In fact, 
the basic properties of the skill parameters s,, 
sz outlined above are largely independent of 
the detailed dynamics of the climate system 
and follow simply from the fact that the evolu- 
tion of the system corresponds to a first-order 
Markov process. The prediction problem be- 
comes more complex in the case of intransitive 
systems, in which more than one stationary 
distribution may exist (for example, for dy- 
namically disconnected regions of the climate 
phase space) or for nearly intransitive systems, 
characterised by two or more quasi-stationary, 
weakly interacting distributions. However, the 
discussion of these more complex cases must 
nec3ssarily remain rather academic without ref - 
erence to a specific climate model and will not 
be pursued further here. 

7. Conclusions 

The principal features of the stochastic cli- 
mate model discussed in this paper may bo 
summarised as follows: 

(1) The time scales of the “weather system” 
and “climate system” are well separated. 

(2)  As a consequence of the time-scale separa- 
tion, the response of the climate system to the 
random forcing by the weather components can 
be described as a continuous random walk or 
diffusion process (first-order Markov process). 
The response can be completely characterised 
by a diffusion tensor, which is proportional to 
the constant spectral density of the random 
forcing at  low frequencies. 

(3) The evolution of the climate system is de- 
scribed by a Fokker-Planck equation for the 
climate probability distribution; the propaga- 
tion and diffusion coefficients of the equation 
depend on the instantaneous climate state, both 
directly and via the weather statistics. 

(4) Without stabilising internal feedback 
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mechanisms, climate variability would grow in- 
definitely . 

( 5 )  Despite the stochastic nature of climate 
variability, the internal feedback terms in cli- 
mate models imply a finite degree of predict- 
ability. However, the maximal predicitive skill 
for a statistically stationary climate system is 
generally no larger than 0.5 and is always 
significantly less than unity. 

The discussion in this part of the paper has 
been restricted to the general structure of 
stochastic models, without reference to a spe- 
cific model. It should be pointed out, however, 
that the extension of a typical S D M  of, say, 

the Budyko-Sellers type to a stochastic model 
requires no basic modification of the internal 
structure of the model, but simply the addition 
of random driving terms. The relevant statisti- 
cal properties of the stochastic forcing functions 
can be obtained directly from numerical ex- 
periments with GCM's or from meteorological 
data. Thus some of the general properties of 
stochastic climate models described in this 
paper can be tested rather easily by comparing 
observed climatic variability with theoretical 
predictions obtained with existing SDM's after 
incorporation of appropriate stochastic forcing 
terms (Lemke, 1976). 
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